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Optical bistability in an electron-hole system: the effect of 
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Abstract We consider an elecmn-hole system illuminated by a laser and show hat the system 
shows bistable and multistable bhaviours. The mechanisms responsible for these behaviours 
me discussed in terms of excitonic and phonon interactions. It is found that both the excitonic 
and the phonon effects contribute lo the multislability in the system. W~th an increase in the 
strength of the phonon interactions, lhe system passes from a phase of mulLsIability to a phase 
of bislability: the reverse happens as the strength of the eleclron-hole interaction increases. 

1. Introduction 

Optical bistability forms an important aspect of the study of non-linear optical interactions 
in solids. Ever since its experimental demonstration in semiconductors by Gibbs er ai 
(1976, 1979). Venkatesan and McCall(l977) and Miller and Smith (1979). there has been a 
tremendous rise in its study, which is important from both physical and technological points 
of view. While the physics of non-linear optical interactions derives its richness from its 
dependence on many-body effects in solids (Lowenau et al 1982, Haug and Schmitt-Rink 
1984, Chemla et ai 1988), the study of optical bistability is important technologically for 
its possible applications in constructing optical memory elements. 

The problem of optical bistability in semiconductors has been studied by considering 
the rate equations for electron-hole pair amplitude, the light field amplitude and the density 
of electrons and holes (Goll and Haken 1980, 1983, Shrivastava and Tripathi 1984, Misra et 
a1 1986). On the other hand, Lowenau et al (1982) studied the phenomenon by calculating 
the complex, non-linear dielectric function for arbitrary free-carrier concentrations from an 
integral equation for the polarization function. 

Recently, there have been some attempts to understand the mechanisms responsible 
for bistable and multistable behaviour in low-dimensional solids, particularly polymers (Li 
et al 199oa, b). These authors made their analyses by considering a polymer inside an 
optical cavity, treating the cavity field, excitons and phonon modes as damped oscillators 
and neglecting the quantum fluctuations. They have shown that multistability in the system 
results from phonon interactions. However, we have recently shown (Misra et a1 1986) 
that multistability would result even without phonon interactions. In view of the findings 
of Li et a1 (1990a,b), we consider in this work a phonon-coupled electmn-hole system 
illuminated by a laser. Unlike in the earlier works, where the interactions of photons and 
phonons are considered with excitons (Li et al 1990a,b), we consider the interaction of 
these modes with electrons and holes separately, thus avoiding the ambiguity of treating 
the excitons as composite bosons. The electron-hole interaction is considered in terms 
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of fermion operators. Since the treahnent of the problem does not involve any specific 
dimension, it should be valid for any arbitrary dimension. 

The paper is organized in the following way. In section 2. we construct and discuss the 
Hamiltonian of a phonon-coupled electron-hole system illuminated by a laser. In section 
3, the equations of motion are derived. Section 4 analyses the steady-state solutions, and 
in section 5 ,  we discuss the mechanisms responsible for bistability and multistability in the 
system considered and present our results. 

2. The Hamiltonian 

An electron-hole system in the presence of phonon interactions is described by the 
Hamiltonian 

(21) 

where E;, E: and haq are the electron, hole and phonon energies: the electron-phonon and 
hole-phonon couplings are described by the function Dq: J is the electron-hole coupling 
energy or, in other words, the energy of an exciton and ( c t ,  ck), ( b z ,  bk) and (a:, aq) are 
the (creation, annihilation) operators for electrons, holes and phonons respectively. 

We consider a sample that is described by the above Hamiltonian in an optical cavity 
and exposed to an extemal !mer field described by the vector potential 

A = ( 2 n h ~ ~ / Q n * ) ' / ~ e ( E  + E + )  (2.2) 

where e is the polarization vector, C2 is the photon frequency andn is the index of refraction 
of the medium. Furthermore, 

B = a0 + poe-in' 
Bt =a$ + Bo t e i m  

where (@:,(YO) and (@,,TO) are the creation and annihilation operators for the stationaty 
cavity and incident photons, respectively. The electron-hole pair creation is described by 
(Hanamura 1977, Misra et al 1986) 

7di = ~ G t ( C : b $ E + C ~ b - k B + )  (2.4) 
k 

where Ck is proportional to the optical dipole matrix element for band-to-band transitions, 
which also depends on the material parameters like the refractive index. Equation (2.4) 
includes only resonant terms, i.e. an electron-hole pair is created by absorption of a photon or 
an electron-hole pair recombines with emission of a photon (rotating-wave approximation). 
It should be noted that in equation (2.4) we have neglected the spatial variation of the cavity 
field in view of the fact that the photon wavevector is small on the electronic scale. 
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Describing the Hamiltonian of the free light field of the sample by %,,#, where 

%light h&,+LYo (2.5) 
we obtain the total Hamiltonian ‘HT from equations (2.1). (2.4) and (2.5) and write it as 

%T = c&ick+Ck + c&:b:bk + ~ h O q U ~ q  
k k 4 

Our Hamiltonian (2.6) is distinguished from that given in equation (1) of Li et a1 (1990b) 
in the sense that it is expressed entirely in terms of fermion and boson operators, and thus 
the equations of motion that we shall derive will be free from the ambiguity of using the 
excitons as bosons. Furthermore, since our main interest is to investigate the non-linearity 
in the interaction of the light field with the system of electrons and holes, we have neglected 
for simplicity the electron-electron and h o l h o l e  interactions, which mainly renormalize 
the electron and hole energies. 

3. Equations of motion 

The equations of motion for the electron and hole number density, electron-hole pair 
amplitude and cavity photon and phonon operators can be written down, using equation 
(2.6) and Heisenberg’s equation: 

dF/dr = (i/h)[HT, F]. (3.1) 
These are: 
d i 

7;(ck+Ck + b;bk) = --[(GkC;b?k + G-xCLkbl)B - (GkCkb-k 4- G-rC-kbk)B+] 
h 

(3.4) 
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and 

(3.5) 

Defining 

(3.9) 

dnk/dt = -(i/h)Gk(A+B - AB') 

dA+/dt = (-i/fi)[ZGk(nk - 1)B' - (E; + &:)A+] 

(3.10) 

- ( I / f i )  ~ 2 D 4 [ u q A + ( q )  - u:A'(-q)l- (i/h)J(l -nx)A' (3.1 1) 
4 

ho /d t  = (-i/h)(hPruo f fGkA) (3.12) 

da,/df = (-l/h)D4nk(-q) - io4u4 (3.13) 

where we have assumed Gk = G-k. The summations over k in equations (3.4) and (3.5) 
are removed because only a single electron is involved in the scattering with a photon 
and a phonon at a given instant. Introducing the time dependence of the light field and 
electron-hole pair amplitude operators in the following way: 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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Since we are interested in possible optical bistability and multistability in the variations 
of output laser intensity as a function of input laser intensity, we follow a semiclassical 
approach. We then replace the operators by their mean values defined as classical variables. 
Thus equations (3.18) to (3.21) become 

d(na)/dt = - ( l /h)Gt((A+E - AP)) t ~ i ( n n )  (3.22) 

d(X+)/dt = -(2i/h)Gt((nk - I )@ + (i/h)(q + &:)(At) 
- (2/h)cD,(u9At(q) -u:A+(-q)) -iS2(Zt) 

4 

- (i/h)J((l - nk)A+) + yz(A+) (3.23) 

(3.24) 

(3.25) 

where the decay constants y ~ ,  yz, M and y4 are introduced phenomenologically. The 
damping terms result from incoherent processes. Since the damping mechanism is 
statistical in nature and is due to random processes, it has been included in the theory 
phenomenologically. While the phenomenological treatment is certainly not valid under 
all circumstances, it  has nevertheless been found to represent in many cases the proper 
qualitative or even quantitative description of the observed phenomena Furthermore. this 
phenomenological procedure can be justified from first principles by coupling the system to 
a heat bath (Haken 1970). 

d(iuo)/dr = -(i/Z)Gk(& + ~ ( ~ 2 0 )  

d(a9)/dt = -(I/fi)D,M-q)) - iw9(a9) + y4(4 

4. Steady-state analysis 

Since our main interest is to investigate the non-linearity in the laser-illuminated electron- 
hole system, we neglect all quantum fluctuations and assume a mean-field decoupling 

(PQ) = W(4?). (4.1) 

However, we shall show that our final results are independent of this decoupling. 
Furthermore, in a spatially homogeneous system, conservation of momentum holds 
(Bogoliubov 1971) and we set 

(4.2) 

(4.3) 
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and 

(4.8) 

(4.10) 

(4.11) 

(4.12) 

Substituting equation (4.12) and its complex conjugate in equation (4.4). we obtain, using 
equation (4.1). 

Using equations (2.3~). (3.14), (3.15) and (4.6), we have 

(BO) = ( E )  - (iGdurn)(A). (4.14) 

From equations (4.1 I), (4.13) and (4.14) we obtain, using (4.1): 

(4.15) 

Thus our final results are independent of the decoupling procedure used (equation (4.1)). 
We define the dimensionless quantities 

(4G:/fh~z)(B+B) = Zo (4.16) 

(4G:b%fi ) (B~Bo)  = Ii (4.17) 

CI = [ha  - + €t)l/fin (4.18) 

cz = G:/h2fiy3 (4.19) 

d = Jfhvz (4.20) 
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Figure 1. Output intensity versus input intensity 
for CI = 0. 0 = 10. p = 1, and (a) d = 0. (b) 
d = -10 and (c) d = -18. 

(4.21) 
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5. Results and discussion 

Figure 2. Output intensity versus input intensity for 
CI = 1, c2 = IO, d = -18, and ( U )  p = 0. (b)  p = 3 
and ( E )  p = 10. 

In equations (4.22) and (4.23) 11 and I,, are input and output laser intensities, respectively. 
Both the equations are cubic as functions of (nk). In the absence of electron-phonon, 
hole-phonon and electron-hole interactions, only equation (4.22) is a cubic equation, but 
equation (4.23) is not. Thus, in the absence of these interactions, the system can only show 
bistable behaviour and the condition is (Shrivastava and Tripathi 1984): 

3cz(2~2 + 5 + 9c;)(d + 1) + 8 4  < G(c: + I )  (5.1) 

which is obtained from dIi/d(nk) = 0 for p = 0 and d = 0. For finite values of either 
d or p or both, both equations are cubic and contribute to the multistability. Indeed, in 
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one of our earlier papers (Misra et a1 1986), we have shown that the variation of output 
intensity as a function of input intensity shows multistable behaviour, even in the absence 
of phonon interactions. This clearly demonstrates that phonons alone are not indispensable 
for multistable behaviour. 

Multistability results when each of I,  and I, shows a maximum and a minimum as 
a function of (nk) .  the conditions for which are obtained by equating to zero the first 
derivatives of Ii and lo with respect to (nn) and solving them for three real roots. Thus 
there would be multiple solutions if the following equations are satisfied simultaneously: 

b:,/4 + a:,/21 < 0 (5.2) 

where i and o stand for equations (4.22) and (4.23); 

ai = (3ala3 - a,2)/3a: 

bi = (2a: - 9ala2a3 + 27a~a4)/2la:  

with 

(5.3) 

(5.4) 

a, = 2(p2 + ci + d Z  + 2pd)  

a3 = 4(d2 + c: + cld + c ~ p  + d p  + cz) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

a2 = -(5d2 + 5cz + 3p2 + 8pd + 2c1p  + 2 q d  + 2 2 )  

an = -(c; + e; + d2 + 2cld + 2 c ~  + I )  

and a, and bo are ai and bi with cz = 0. 
In figures 1 and 2 we have plotted the output intensity versus input intensity for different 

conditions. In figure 1 we have plotted lo versus li for fixed values of C I ,  cz and p .  and 
varying d ,  i.e. by varying the strength of electron-hole interaction. It is found that, as the 
electron-hole strength is increased, the system shows pronounced multistable behaviour. 
However, at d = 0 (figure l(a)) the system does not show multistability. In other words, 
excitonic effects are important for multistability. In figure 2(a) we have plotted the output 
intensity as a function of input intensity for fixed values of CI, cz and d .  It is found that 
the system shows multistable behaviour even for p = 0 (figure 2(a)), which indicates that 
phonons are not indispensable for multistability. For small changes in phonon strength, 
i.e. for finite but small positive values of the phonon energy, the system shows multistable 
behaviour (figure 2(b)),  but the turning points, A and B, show up at different input intensities. 
To illustrate this point, we consider the curve for p = 0 (figure 2(a)). As the input 
laser intensity increases, the output intensity increases and reaches the point A. Since A 
is unstable, lo will either go up with increase in the input intensity or come down along 
the cuwe AB with decrease in the input intensity. Similarly at B, the output intensity 
would either go up and then decrease or pass along the curve BC and increase. Thus, the 
system shows multistable behaviour. However, as the strength of the phonon interaction 
increases, the system passes through a stage of bistability (figure 2(c)), i.e. with increase in 
11, lo passes through the first branch, then comes down at A and then increases. But with 
decrease in Ii, Io passes through the lower branch, comes down to B and then goes up and 
then decreases. 

Before we conclude, we would like to compare our results with that of Li et al (1990% b), 
who have also shown multistability in a system of excitons coupled to phonons and a 
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light field. They have observed that viltual excitons, phonon modes and feedback of the 
cavity are all indispensable for such behaviour. Since they have treated excitons as bosons, 
their multistability results from a laser-illuminated boson system. On the other hand, we 
considered a coupled fermion-boson system illuminated by a laser. Thus OUT approach is 
free from the ambiguity of treating the excitons as composite bosons. While there is an 
overal1 agreement in the mechanisms responsible for multistability, the difference arises in 
the role of phonons. We have shown that phonons do contribute to the multistability but 
these are not indispensable, as observed by Li ef a1 (1990a,b). This disagreement is due 
presumably to the difference in the systems considered. 

Acknowledgment 

The research was supported in part by the University Grants Commission (India) through 
the form of a research grant to one of the authors (GST). 

References 

Bogoliutm N N 1971 Lmures on Quantum Stais ics  vol2 (London: McDonald) p 4 
Chemla D S. Miller D A B and Schmitt.Rink S 1988 Opricol Non-lineoriries md Inslubiliries in Semiconductors 

Gibbs H M, McClll S Land Venkafesan T N C 1976 Phys. Rev. Lerr. 36 1135 
Gibbs H M, McCall S h Venkatesan T N C. Gossard A C Passner A and Weignman W 1979 Appl. Phys. Len. 

0011 J and Haken H 1980 Phys. Srulus Solidi b 101 489 - 1983 Phys. Rev. A 28 910 
Haken H 1970 Hundhuch der Physik voI XXVi2c (Berlin: Springer) 
Hylamura E 1977 Phys. Rep. 3 3  215 
Haug H and Schmitt-Rink S 1984 Prng. Quanrum Elecrron. 9 3 
Li X S. Kin D L. George T F and Sun X 1990a Phys. Rev. B 41 3280 - 1990b Phys. Rev. B 42 2977 
Lowenau 1 P. Schmitt-Rink S and Haug H 1982 Phys. Rev. Lell, 49 151 I 
Miller D A B and Smith S D 1979 Opt. Commun. 31 101 
Misra C M, Tripathi P and Tripathi G S 1986 Phys. Len. 117A 210 
Shrivastava K N and Tripathi G S 1984 J.  Lumin. 31 506 
Venkatesan T N C and McClIl S C 1977 Appl. Phys. Lett. 30 282 

(New York Academic) 

35 451 


